Document-Level Multi-Event Extraction with Event Proxy Nodes and Hausdorff Distance Minimization

Xinyu Wang, Lin Gui, Yulan He

Document-Level Multi-Event Extraction

Input:

... [5] Shenkai Petrochemical Co., Ltd. received the receipt from the company's shareholder, **Yexiang Investment Management Co., Ltd.** on the evening of November 15, 2016 Regarding the notice of the shares being frozen. ... [8] On November 14, 2016, Yexiang Investment received the Notice of Litigation Preservation from the **People's Court of Binjiang District**, and granted a total of **47,577,481 shares** held by Yexiang Investment will be frozen, and the freezing period is from **October 31, 2016** to **October 30, 2019** ... [10] Yexiang Investment is ... holding **47,577,481 shares** of the company, accounting for **13.07%** of the company's total share capital. ... [12] On **February 2, 2016**, the **42,000,000 shares** held by it are pledged to **Haitong Securities Co., Ltd.**, and the repurchase transaction date was **February 1, 2017**. ...

Output:

Event #1: Equity Pledge Pledger: Yexiang Investment Management Co., Ltd. Pledgee: Haitong Securities Co., Ltd. TotalHoldingShares: 47,577,481 shares TotalHoldingRatio: 13.07% PledgedShares: 42,000,000 shares StartDate: February 2, 2016 EndDate: February 1, 2017 **Event #2: Equity Freeze** EquityHolder: Yexiang Investment Management Co., Ltd. LegalInstitution: People's Court of Binjiang District TotalHoldingRatio: 13.07% FrozeShares: 47,577,481 shares StartDate: October 31, 2016 EndDate: October 30, 2019

Existing methods

The idea of existing method is modeling entity relations and decoding entity relations into events:

2

limitations

- They decode events from entity information and tend to produce local optimal results without considering the interdependency of multiple events globally in a document.
- Event decoding by iteratively merging entities suffers from error propagation that an event type or an entity that has been incorrectly classified cannot be corrected later.
- Every decoding decision requires iterating all entity mentions in a document, which is computationally inefficient

Our method

We propose Proxy Nodes Clustering Network (ProCNet) to capture the global information among events with proxy nodes and Hausdorff distance in a new event-level metric space.

... the receipt from the company's shareholder, e_1 : Yexiang Investment Management Co., Ltd. on the evening of e_2 : November 15, 2016 Regarding the notice of the shares being frozen. ... On e_3 : November 14, 2016, Yexiang Investment received the Notice of Litigation Preservation from the e_4 : People's Court of Binjiang District, and granted a total of e_5 : 47,577,481 shares held by Yexiang Investment will be frozen, and the freezing period is from e_6 : October 31, 2016 to e_7 : October 30, 2019 ... Yexiang Investment is ... holding e_5 ': 47,577,481 shares of the company, accounting for e_8 : 13.07% of the company's total share capital. ... On e_9 : February 2, 2016, ...

Entity Extraction and Representation Learning

... the receipt from the company's shareholder, e_1 :Yexiang Investment Management Co., Ltd. on the evening of e_2 :November 15, 2016 Regarding the notice of the shares being frozen. ... On e_3 :November 14, 2016, Yexiang Investment received the Notice of Litigation Preservation from the e_4 :People's Court of Binjiang District, and granted a total of e_5 :47,577,481 shares held by Yexiang Investment will be frozen, and the freezing period is from e_6 :October 31, 2016 to e_7 :October 30, 2019 ... Yexiang Investment is ... holding e_5' :47,577,481 shares of the company, accounting for e_8 :13.07% of the company's total share capital. ... On e_9 :February 2, 2016, ...

Pretrained Language Model

Event Representation Learning

- Each proxy node represents a pseudo-event.
- Proxy nodes are interconnected to allow information exchange among potential events.
- Learning with Hypernetwork Graph Neural Network.
- Each proxy node resides in a new event-level metric space by aggregating information from the entity-level space.

Event Decoding

Decode proxy node into events.

Hausdorff Distance Minimization

- We treat the predicted events as a set and the ground-truth events as another set.
- Hausdorff distance measures the distance of the two sets and simultaneously consider all events and all their arguments.
- Minimize the Hausdorff distance to train the model to directly produce a globally optimal solution without the need of using decoding strategies as in existing approaches.

Hausdorff Distance Minimization

$$d(\mu_{z_i}, \mu_{y_j}) = \operatorname{CE}(\boldsymbol{p}_{\hat{c}_i}, c_j) + \frac{1}{|\bar{e}|} \sum_{k=1}^{|e|} \operatorname{CE}(\boldsymbol{p}_{\hat{a}_{i,k}}, a_{j,k})$$

We define distance between a pseudoevent (proxy node) u_z and a ground-truth event u_y as d(.) with their cross-entropy of event type and argument.

4 Hausdorff Distance Minimization

Hausdorff Distance Minimization

$$D_H(\mathcal{U}_z, \mathcal{U}_y) = \frac{1}{|\mathcal{U}_z|} \sum_{\substack{\mu_z \in \mathcal{U}_z \\ \mu_z \in \mathcal{U}_z}} \min_{\substack{\mu_y \in \mathcal{U}_y \\ \mu_z \in \mathcal{U}_z}} d(\mu_z, \mu_y) + \frac{1}{|\mathcal{U}_y|} \sum_{\substack{\mu_y \in \mathcal{U}_y \\ \mu_z \in \mathcal{U}_z}} \min_{\substack{\mu_z \in \mathcal{U}_z \\ \mu_z \in \mathcal{U}_z}} d(\mu_z, \mu_y)$$

We minimize an approximated average Hausdorff distance with defined d(.).

4 Hausdorff Distance Minimization

Experiments – Dataset

Train set	25,632
Development set	3,204
Test set	3,204
Total	32,040

ChFinAnn Dataset

Train set	6,515
Development set	500
Test set	1,171
Total	8,168

DuEE-Fin Dataset

Event Type	Distribution
Equity Freeze	4.2%
Equity Repurchase	9.5%
Equity Underweight	16.0%
Equity Overweight	18.3%
Equity Pledge	52.0%

Event Type	Distribution
Win B idding	9.5%
Financial Loss	11.1%
Business Acquisition	9.7%
Business Bankruptcy	2.5%
CCorporate Financing	5.5%
Companies Listing	5.1%
Shareholders Holdings Decrease	9.3%
Shareholders Holdings Increase	3.5%
Share Repurchase	14.1%
R egulatory T alk	1.8%
Pledge Release	7.7%
Pledge	10.8%
Executive Change	9.4%

Experiments – Overall Results

Overall F1 Scores

Experiments – Training Time

Training Time

Error Case Study

... [9] Name of shareholder: Guangxin Holding Group Co., Ltd. ... [11] Guangxin Group disclosed its share increase plan on October 23, 2018. ... [21] As of November 19, 2018, Guangxin Group has accumulated 1653640 shares of the company through centralized bidding through the Shanghai Stock Exchange trading system, accounting for 0.08% of the company's total share capital, with an average increase price of 9.59 yuan per share, the increase amount is 15854061.0 yuan,... [22] On November 20, 2018, Guangxin Group increased its holdings of the company's shares by 1788000 shares through centralized bidding through the Shanghai Stock Exchange trading system, accounting for 10% of the company's total share capital. 0.08%, the average increase price is 9.36 yuan per share, and the increase amount is 16740153.0 yuan. ... [24] After the above-mentioned increase in holdings, Guangxin Group directly held 264558774 shares of the company, accounting for 12.49% of the company's total share capital ...

Predicted Events:	
Event #1: Equity Overweight	
EquityHolder: Guangxin Holding Group Co., Ltd.	
TradedShares: 1653640 shares	
StartDate: null	
EndDate: November 20, 2018	
LaterHoldingShares: null	
AveragePrice: 9.59 yuan per share	
Event #2: Equity Overweight	
EquityHolder: Guangxin Holding Group Co., Ltd.	
TradedShares: 1788000 shares	
StartDate: null	
EndDate: November 20, 2018	
LaterHoldingShares: null	
AveragePrice: 9.36 yuan per share	

Conclusion

- We propose a new framework for document-level multi-event extraction by learning event proxy nodes in a new event-level metric space to better model the interactions among events.
- We utilize the Hausdorff distance to optimize the difference between the generated events and the gold standard events directly, considering all events simultaneously to train model towards the global minimum.