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Previous Dataset
• HierDoc: focus on scientific papers; well-structured and short.



Our Collected ESGDoc dataset



• ESGDoc comprises 1,093 publicly available ESG annual reports, 
sourced from 563 distinct companies, and spans the period from 
2001 to 2022.

• Documents in ESGDoc are extensive, lengthy, diverse, and complex.

ESGDoc Dataset

HierDoc ESGDoc

Total Document 650 1,093

Average pages per 
document 19 72



Previous Method

• Trained from scratch.
• Modelling relationships 

of heading pairs, 
consuming more GPU 
memory as document 
size increases, which is 
impractical for lengthy 
documents.
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Our method is based on the following assumptions:
• Assumption 1: Humans typically read documents in a left-to-right, 

top-to-bottom order, and a higher-level heading is read before its 
corresponding subheading and body text. 
• Assumption 2: In a table of contents, the font size of a higher-level 

heading is no smaller than that of a lower-level heading or body text. 
• Assumption 3: In a table of contents, headings of the same 

hierarchical level share the same font size.

Our Method



Our Method - Reorder

• Reorder the 
document based on 
reading order (from 
top-left to bottom-
right) via xy-cut 
algorithm.
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Our Method – Tree Construction

• Construct a tree based on 
the font size and reading 
order, wherein text with a 
larger font size is 
positioned at a higher level 
within the hierarchy. root
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Our Method – Tree Segmentation

• Divide the document based on tree 
structure rather than by page, 
retaining both local and long-distance 
information within each segment.
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Our Method - Modelling

• Model each subtree separately 
via GNN, ensuring that GPU 
usage remains constant as the 
document lengthens.
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Our Method – Modification Prediction

For each node, one of the following modifications is 
predicted:
• Delete: This node is predicted as not a heading and 

will be deleted from the tree. 
• Keep: This node is predicted as a heading and does 

not require any operations.
• Move: This node is predicted as a low-level heading 

that is a sibling of a high-level heading due to having 
the same font size in rare cases. This node will be 
relocated to be a child as its preceding sibling. 
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Our Method – Modification

• Perform modification based 
on the prediction made for 
each node.
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Experiments

• MTD exhibits a low score in ESGDoc F. (Full) due to the out-of-memory 
issue when processing lengthy documents.
• ESGDoc P. (Partial) exclude documents longer than 50 pages.
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Experiments

• ESGDoc is more challenging than HierDoc.
• CMM outperforms MTD and can handle documents in any length.
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Experiments

• CMM is more computational efficient than MTD.
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Experiments

• Ablation Study.
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